Slope of a Line (graph)

Positive slope

Negative slope

Zero slope

Undefined slope

SLOPE OF A LINE

The **rise** is the difference in the *y*-values of two points on a line.

The **run** is the difference in the *x*-values of two points on a line.

The **slope** of a line is the ratio of rise to run for any two points on the line.

slope = $\frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x}$

(Remember that *y* is the **dependent variable** and *x* is the **independent variable**.)

Example 1

Find the slope of the line.

Begin at one point and count vertically to find the rise.

Then count horizontally to the second point to find the run.

slope =
$$\frac{2}{4}$$
 $\frac{1}{2}$

The slope of the line is $\frac{1}{2}$

Example 2

Find the slope of the line.

Begin at one point and count vertically to find the rise.

Then count horizontally to the second point to find the run.

slope =
$$\frac{4}{4}$$
 1

The slope of the line is 1.

Practice

Find the slope of the line.

Slope of a Line

A <u>rate of change</u> is a ratio that compares the amount of change in a ______ variable to the amount of change in an in _______variable.

rate of change = change in dependent variable change in independent variable