Independent and Dependent Events

Mr. Wong
$6{ }^{\text {th }}$ Grade Mathematics

Independent Events

Are events in which prior events do not affect the current event.
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

Dependent Events

Are events in which prior events affect the current event.
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}$ after A$)$

$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

Independent Events

You roll a number cube once. Then you roll it again. What is the probability that you get a 3 on the first roll and a number less than 5 on the second roll?

$$
\begin{aligned}
& \mathrm{P}(3)=1 / 6 \quad \mathrm{P}(<5)=4 / 6=2 / 3 \\
& \mathrm{P}(3) \cdot \mathrm{P}(<5)=1 / 6 \cdot 2 / 3 \\
& \mathrm{P}(3) \cdot \mathrm{P}(<5)=2 / 18=1 / 9
\end{aligned}
$$

$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

Independent Events

You roll a number cube once. Then you roll it again. What is the probability that you get a even on the first roll and a number more than 4 on the second roll?
$P($ Even $)=3 / 6=1 / 2 \quad P(>4)=2 / 6=1 / 3$
$P($ Even $) \cdot P(>4)=1 / 2 \cdot 1 / 3$
$\mathrm{P}($ Even $) \cdot \mathrm{P}(>4)=1 / 6$

$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}$ after A$)$

Dependent Events

Three girls and four boys volunteer to represent their class at a school assembly. The teacher selects one name and then another from a bag containing seven names. What is the probability that both representatives are girls?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{G})=3 / 7 \mathrm{P}(\mathrm{G} \text { after } \mathrm{G})=2 / 6=1 / 3 \\
& \mathrm{P}(\mathrm{G}) \cdot \mathrm{P}(\mathrm{G} \text { after } \mathrm{G})=3 / 7 \cdot 1 / 3 \\
& \mathrm{P}(\mathrm{G}) \cdot \mathrm{P}(\mathrm{G} \text { after } \mathrm{G})=3 / 21=1 / 7
\end{aligned}
$$

$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}$ after A$)$

Dependent Events

$P(E)=$
\# of possible

Three girls and four boys volunteer to represent their class at a school assembly. The teacher selects one name and then another from a bag containing seven names. What is the probability that the first one is a boy and the second is a girl?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~B})=4 / 7 \mathrm{P}(\mathrm{G} \text { after } \mathrm{B})=3 / 6=1 / 2 \\
& \mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{G} \text { after } \mathrm{B})=4 / 7 \cdot 1 / 2 \\
& \mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{G} \text { after } \mathrm{B})=4 / 14=2 / 7
\end{aligned}
$$

